A Device for Fog Computing to Improve Big Data Analytics
Keywords:
Fog Computing, Big Data Analytics, Real-time Data ProcessingAbstract
By facilitating quicker processing, lower latency & more efficiency, fog computing devices are revolutionizing big data analytics. Fog computing processes data locally, minimizing network congestion & dependence on constant cloud connectivity, in contrast to typical cloud-based systems that encounter constraints from centralized data processing. Real-time analytics is supported by this method, which is essential for applications such as autonomous systems, smart cities, IoT, and healthcare. Edge devices may conduct sophisticated analytics even in low-connectivity settings by integrating Artificial Intelligence & Machine learning models, improving security & also their privacy by reducing the transfer of sensitive data.
References
1. Shi, W., & Dustdar, S. (2016). The promise of edge computing. Computer, 49(5), 78-81.
2. Yi, S., Li, C., & Li, Q. (2015, June). A survey of fog computing: concepts, applications and issues. In Proceedings of the 2015 workshop on mobile big data (pp. 37-42).
3. Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J., & Yang, X. (2017). A survey on the edge computing for the Internet of Things. IEEE access, 6, 6900-6919.
4. Li, H., Ota, K., & Dong, M. (2018). Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE network, 32(1), 96-101.
5. Bonomi, F., Milito, R., Natarajan, P., & Zhu, J. (2014). Fog computing: A platform for internet of things and analytics. Big data and internet of things: A roadmap for smart environments, 169-186.
6. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE internet of things journal, 3(5), 637-646.
7. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., ... & Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289-330.
8. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2017). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450-465.
9. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738-1762.
10. Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1), 30-39.
11. Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Software: Practice and Experience, 47(9), 1275-1296.
12. Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for IoT big data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2923-2960.
13. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE communications surveys & tutorials, 19(4), 2322-2358.
14. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., & Sabella, D. (2017). On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials, 19(3), 1657-1681.
15. Xu, X., He, C., Xu, Z., Qi, L., Wan, S., & Bhuiyan, M. Z. A. (2019). Joint optimization of offloading utility and privacy for edge computing enabled IoT. IEEE Internet of Things Journal, 7(4), 2622-2629.
16. Katari, A., Muthsyala, A., & Allam, H. HYBRID CLOUD ARCHITECTURES FOR FINANCIAL DATA LAKES: DESIGN PATTERNS AND USE CASES.
17. Katari, A. Conflict Resolution Strategies in Financial Data Replication Systems.
18. Katari, A., & Rallabhandi, R. S. DELTA LAKE IN FINTECH: ENHANCING DATA LAKE RELIABILITY WITH ACID TRANSACTIONS.
19. Nookala, G., Gade, K. R., Dulam, N., & Thumburu, S. K. R. (2021). Unified Data Architectures: Blending Data Lake, Data Warehouse, and Data Mart Architectures. MZ Computing Journal, 2(2).
20. Nookala, G. (2021). Automated Data Warehouse Optimization Using Machine Learning Algorithms. Journal of Computational Innovation, 1(1).
21. Nookala, G., Gade, K. R., Dulam, N., & Thumburu, S. K. R. (2020). Automating ETL Processes in Modern Cloud Data Warehouses Using AI. MZ Computing Journal, 1(2).
22. Boda, V. V. R., & Immaneni, J. (2021). Healthcare in the Fast Lane: How Kubernetes and Microservices Are Making It Happen. Innovative Computer Sciences Journal, 7(1).
23. Immaneni, J. (2021). Using Swarm Intelligence and Graph Databases for Real-Time Fraud Detection. Journal of Computational Innovation, 1(1).
24. Immaneni, J. (2020). Cloud Migration for Fintech: How Kubernetes Enables Multi-Cloud Success. Innovative Computer Sciences Journal, 6(1).
25. Gade, K. R. (2021). Data Analytics: Data Democratization and Self-Service Analytics Platforms Empowering Everyone with Data. MZ Computing Journal, 2(1).
26. Gade, K. R. (2021). Data-Driven Decision Making in a Complex World. Journal of Computational Innovation, 1(1).
27. Gade, K. R. (2021). Migrations: Cloud Migration Strategies, Data Migration Challenges, and Legacy System Modernization. Journal of Computing and Information Technology, 1(1).
28. Thumburu, S. K. R. (2021). The Future of EDI Standards in an API-Driven World. MZ Computing Journal, 2(2).
29. Thumburu, S. K. R. (2021). Optimizing Data Transformation in EDI Workflows. Innovative Computer Sciences Journal, 7(1).
30. Thumburu, S. K. R. (2021). Performance Analysis of Data Exchange Protocols in Cloud Environments. MZ Computing Journal, 2(2).
31. Komandla, V. Strategic Feature Prioritization: Maximizing Value through User-Centric Roadmaps.
32. Komandla, V. Enhancing Security and Fraud Prevention in Fintech: Comprehensive Strategies for Secure Online Account Opening.
33. Komandla, V. Transforming Financial Interactions: Best Practices for Mobile Banking App Design and Functionality to Boost User Engagement and Satisfaction.
34. Muneer Ahmed Salamkar. Real-Time Data Processing: A Deep Dive into Frameworks Like Apache Kafka and Apache Pulsar. Distributed Learning and Broad Applications in Scientific Research, vol. 5, July 2019
35. Muneer Ahmed Salamkar, and Karthik Allam. “Data Lakes Vs. Data Warehouses: Comparative Analysis on When to Use Each, With Case Studies Illustrating Successful Implementations”. Distributed Learning and Broad Applications in Scientific Research, vol. 5, Sept. 2019
36. Muneer Ahmed Salamkar. Data Modeling Best Practices: Techniques for Designing Adaptable Schemas That Enhance Performance and Usability. Distributed Learning and Broad Applications in Scientific Research, vol. 5, Dec. 2019
37. Naresh Dulam. Snowflake: A New Era of Cloud Data Warehousing. Distributed Learning and Broad Applications in Scientific Research, vol. 1, Apr. 2015, pp. 49-72
38. Naresh Dulam. The Shift to Cloud-Native Data Analytics: AWS, Azure, and Google Cloud Discussing the Growing Trend of Cloud-Native Big Data Processing Solutions. Distributed Learning and Broad Applications in Scientific Research, vol. 1, Feb. 2015, pp. 28-48
39. Naresh Dulam. DataOps: Streamlining Data Management for Big Data and Analytics . Distributed Learning and Broad Applications in Scientific Research, vol. 2, Oct. 2016, pp. 28-50
40. Sarbaree Mishra. “The Age of Explainable AI: Improving Trust and Transparency in AI Models”. Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, Oct. 2021, pp. 212-35
41. Sarbaree Mishra, et al. “A New Pattern for Managing Massive Datasets in the Enterprise through Data Fabric and Data Mesh”. Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, Dec. 2021, pp. 236-59
42. Sarbaree Mishra. “Leveraging Cloud Object Storage Mechanisms for Analyzing Massive Datasets”. African Journal of Artificial Intelligence and Sustainable Development, vol. 1, no. 1, Jan. 2021, pp. 286-0
43. Babulal Shaik. Developing Predictive Autoscaling Algorithms for Variable Traffic Patterns . Journal of Bioinformatics and Artificial Intelligence, vol. 1, no. 2, July 2021, pp. 71-90
44. Babulal Shaik, et al. Automating Zero-Downtime Deployments in Kubernetes on Amazon EKS . Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, Oct. 2021, pp. 355-77